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1. Introduction

The original E11 conjecture [1] concerned the eleven dimensional supergravity theory, the

ten dimensional IIA and IIB supergravity theories [2] and their dimensional reductions. It

was later realised that E11 is just one of a class of special algebras called very extended

algebras [3]. Such algebras can be constructed from each finite dimensional semi-simple

Lie algebra. If the latter algebra is denoted by G, then the very extended algebra is

denoted by G+++. It was proposed that the bosonic string effective action generalised to

D dimensions is associated with the non-linear realisation of an algebra originally denoted

by K27 in the 26-dimensional case and which was later identified with D+++
D−2 [1], and

similarly gravity in D dimensions is associated with A+++
D−3 [4]. Indeed, it was proposed

to consider non-linear realisations for all G+++ algebras [5] and their low level content

was found in [6]. Clearly not all these theories possess supersymmetry, but the non-linear

realisation associated with E11, i.e. E+++
8 , is at low levels the bosonic sector of maximal

supergravity theories invariant under thirty two supersymmetries [1]. Also in all the other

cases the low level content of the non-linear realisation agrees with that of the theory to

which it is associated with [1, 2, 4, 6]. In particular, the non-linear realisation of G+++
2

has the bosonic field content of N = 2 supergravity in five dimensions, that is invariant

under eight supersymmetries, while the non-linear realisation of F+++
4 is a six dimensional

N = (1, 0) theory, which again has eight supersymmetries [6].
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In all the above cases the real form of the very extended algebra used to construct the

non-linear realisations is the one which has the maximal number of non-compact generators,

called the maximally non-compact real form. The corresponding local sub-algebra of the

non-linear realisation is the maximal compact sub-algebra which for this real form is the

one invariant under the Cartan involution. This is also the case for the ten dimensional

N = 1 supergravity theory which was found to be associated with the very extended

algebra D+++
8 , as well as ten-dimensional N = 1 supergravity coupled to one vector,

corresponding to the addition of one Yang-Mills multiplet, which is associated to the very

extended algebra B+++
8 . However, if one adds n, for n ≥ 1, vector fields then the associated

very extended Kac-Moody algebra is D+++
8+ n

2
for n even and B+++

8+
(n−1)

2

for n odd [7] and the

required real form of these very extended algebras is not maximally non-compact.

Different real forms of a complex algebra have different numbers of compact genera-

tors and so different compact sub-algebras. The local sub-algebra used in the non-linear

realisation is the maximal compact sub-algebra of the real form being considered and the

fields in the non-linear realisation are found by writing down a general group element which

depends on space-time and remove parts of it using the local subgroup. The coefficients of

the generators that remain are the fields of the theory. Clearly, if one uses a different real

form, the local sub-algebra is different and as a result so will be the group element in the

non linear realisation and consequently the corresponding field content. Furthermore, the

dynamics is just that which is invariant under rigid transformations of the algebra which

is used to define the non-linear realisation and also under the local sub-algebra. Clearly, a

different choice of local sub-algebra also affects the dynamical equations. Hence, different

real forms lead to different non-linear realisations which are physically inequivalent.

This is apparent in the above examples as the algebra D+++
m is associated with the

bosonic string in m + 2 dimensions and also with ten-dimensional N = 1 supergravity

coupled to 2(m−8) Yang-Mills multiplets. The different field content of these theories arises

from the fact that the real forms used are different. Deleting the first three nodes of the

Dynkin diagram of D+++
m we find the finite dimensional algebra Dm, but while the bosonic

string corresponds to the maximally non-compact real form SO(m,m) of this algebra with

local sub-algebra SO(m)⊗SO(m), ten-dimensional N = 1 supergravity coupled to 2(m−8)

Yang-Mills multiplets corresponds to the real form SO(8, 2m − 8) with local sub-algebra

SO(8) ⊗ SO(2m− 8) [7].

Different real forms of finite dimensional semi-simple Lie algebras have come up in the

context of supergravity theories in the past. In particular, certain supergravity theories

have scalar fields that belong to cosets of groups that are not in their maximally non-

compact form. The supergravity theories with eight supersymmetries that exist in six

dimensions and less and the spaces to which their scalars belong have been the subject of

much study. In particular in [8 – 11] the geometry of the spaces that arise has been studied.

The way the cosets and the corresponding non-split real forms are linked under dimen-

sional reduction or oxidation have been studied in [8, 9, 12 – 15]. Different real forms of

semi-simple Lie algebras have also occurred in the context of cosmological billiards [16 – 18].

In the original understanding of the E11 and related conjectures an important stepping
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stone was the result [19] that the theories under study, such as eleven dimensional super-

gravity, are non-linear realisations. The Kac-Moody algebra is taken to be the smallest

such algebra that contains all the generators and commutators of the algebra that turn up

in the non-linear realisation. If one suspects that the Kac-Moody algebra associated with a

given theory is a very extended algebra then one can adopt a short cut. The three dimen-

sional theory arising from a very extended Kac-Moody algebra is found by decomposing

G+++ into the algebras that result in deleting the affine node of its Dynkin diagram. This

is the node usually labelled three. The resulting algebra is A2 ⊗ G where the A2 factor

is associated with three dimensional gravity and the factor G is the internal symmetry

group in three dimensions. At lowest levels the resulting three dimensional theory contains

only gravity and scalars which for theories with supergravity are always found to belong

to a coset space or non-linear realisation for the group G and a subgroup H. Hence if one

suspects that a theory has a formulation at low levels as a non-linear realisation of a very

extended algebra G+++ one can find the group G by dimensionally reducing the theory in

question to three dimensions and read off the group G from the scalar coset and thus the

conjectured very extended algebra G+++ of the higher dimensional theory. The reduction

also provides the real form of the algebra G+++ as this is inherited from the real form of

the algebra G that turns up in the three dimensional theory. Indeed the subgroup H of

the scalar coset is the maximal compact subgroup of G which tells us which real form of

G arose.

Having chosen the very extended Kac-Moody algebra G+++ and its real form one will

automatically recover the correct scalar coset in three dimensions, however the field content

in all other dimensions is uniquely predicted by the non-linear realisation of G+++ and one

can test if this agrees with the theory in question or not.

In this paper we consider the theories with eight supersymmetries whose scalars

parametrise symmetric manifolds. These theories have been classified in [12]. We con-

jecture that all these theories have an underlying very-extended Kac-Moody symmetry.

We identify this Kac-Moody symmetries and verify that they lead to precisely the correct

field content for some of the theories of most interest.

The paper is organised as follows. In section 2 we give a review of theories with

eight supersymmetries in six, five, four and three dimensions. In section 3 we derive the

Kac-Moody algebras G+++ associated with different real forms of various Lie algebras,

and conjecture their relation with theories with eight supersymmetries. In section 4 we

show that the bosonic field content of these supersymmetric theories exactly coincides with

the one obtained from the G+++ non-linear realisation. Section 5 contains a discussion

of our results. An appendix explains how one obtains the representations of the internal

symmetry group for all p-forms in D dimensions starting from a decomposition of the

adjoint representation of G+++.

2. Review of theories with eight supersymmetries

In this paper we are interested in theories with eight supersymmetries and in particular

their field content in order to compare it with the predictions of the very extended Kac-
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Moody algebras. Such theories exist in dimensions six and less as is readily apparent if

one considers the representations of Clifford algebras. Indeed in six dimensions a Dirac

spinor has 8 complex components, and a Weyl condition can be imposed, so that the

corresponding irreducible spinor has 8 real components. A Majorana condition can be

imposed on a USp(2) doublet of spinors, leading again to 8 real components if the spinors

are Weyl. Spinors satisfying this type of Majorana conditions are often called symplectic

Majorana spinors. In five dimensions no condition can be imposed on a single irreducible

spinor, which has 8 real components. As in six dimensions, a symplectic Majorana condition

can be imposed on a doublet of spinors in five dimensions.

In six dimensions theories with eight supersymmetries are minimal because a spinor

with eight real components is irreducible. Minimal supersymmetric theories in six dimen-

sions are usually called N = (1, 0) theories to denote the fact that the corresponding

supercharge is a Weyl spinor and therefore these theories are chiral. The six-dimensional

supergravity multiplet consists of the vierbein eµ
a, a 2-form A

(−)
a1a2 and a gravitino ψaαi.

The 2-form has a field strength which is anti-self dual while the gravitino is a USp(2) sym-

plectic Majorana-Weyl spinor, hence the i = 1, 2 index. In six dimensions there are also

tensor and vector multiplets. The field content of the tensor multiplet is given by a 2-form

A
(+)
a1a2 and a scalar φ, together with a symplectic Majorana-Weyl spinor whose chirality is

opposite to the one of the gravitino. The field strength of the 2-form is self-dual and the

scalar φ is real. The vector multiplet consists of a vector Aa and a symplectic Majorana-

Weyl spinor of the same chirality of the gravitino. There is also a hyper-multiplet which

consists of two fermions and four scalars, but we will not consider this and its dimensional

reductions further in this paper.

If we denote by n
(6)
T and n

(6)
V the number of tensor and vector multiplets respectively,

then the bosonic content of the six dimensional theory is given by

(eµ
a, A(−)

a1a2
;A(+)

a1a2
(n

(6)
T ), φ(n

(6)
T );Aa(n

(6)
V )) (2.1)

where the numbers n
(6)
T and n

(6)
V in brackets denote the number of such fields. The scalars

parametrise the coset
SO(n

(6)
T

,1)

SO(n
(6)
T

)
[10].

We now consider the five dimensional case. As in six dimensions, theories with eight

supersymmetries are minimal in five dimensions. Nonetheless, they are usually called

N = 2 theories. The dimensional reduction of the six-dimensional gravity multiplet gives

in five dimensions the gravity multiplet together with one vector multiplet, which has the

bosonic field content (Aa, ϕ) where the scalar ϕ is real, while the dimensional reduction to

five dimensions of the six dimensional tensor and vector multiplets both give rise to the

vector multiplet in five dimensions, using the fact that a 2-form is dual to a vector in five

dimensions. The five dimensional supergravity multiplet has the bosonic content (eµ
a, Ba).

As a result the dimensional reduction of the six dimensional theory to five dimensions has

the field content

(eµ
a, Ba, Aa(n

(5)
V ), ϕ(n

(5)
V )) (2.2)

where n
(5)
V = n

(6)
T +n

(6)
V +1. In the case in which the five-dimensional theory does not have

a six-dimensional origin, still equation (2.2) holds with arbitrary n
(5)
V .
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The complete classification of the N = 2 five-dimensional massless theories describing

supergravity coupled to n
(5)
V vector multiplets was achieved in [20]. The scalars parametrise

manifolds which are called very special real. For the cases in which the scalar manifold

is a symmetric space a complete classification was derived long time ago in [8], and the

corresponding cosets are

SO(n
(5)
V − 1, 1)

SO(n
(5)
V − 1)

× SO(1, 1) (2.3)

SL(3, R)/SO(3) (n
(5)
V = 5) (2.4)

SL(3, C)/SU(3) (n
(5)
V = 8) (2.5)

SU∗(6)/USp(6) (n
(5)
V = 14) (2.6)

E6(−26)/F4 (n
(5)
V = 26) (2.7)

SO(1, n
(5)
V )

SO(n
(5)
V )

. (2.8)

In four dimensions the minimal amount of supersymmetries that a supersymmetric

theory can have is four, corresponding to the fact that an irreducible spinor representation

has four real components in four dimensions. Therefore theories with eight supersymmetries

are called N = 2 theories. The gravity multiplet has a bosonic field content which consists

of (eµ
a, Ba), while the vector multiplet, giving rise to the N = 2 Yang-Mills theory, has the

bosonic field content (Aa, φ1 ± iφ2), where φ1 and φ2 are real. The dimensional reduction

of the above six dimensional theory to four dimensions leads to N = 2, D = 4 supergravity

coupled to n
(4)
V N = 2 Yang-Mills multiplets where, in case the theory can be obtained

from a reduction from 6 dimensions, n
(4)
V = n

(6)
T + n

(6)
V + 2. The field content is

(eµ
a, Ba, Aa(n

(4)
V ), (φ1 ± iφ2)(n

(4)
V )) . (2.9)

Equation (2.9) also holds in the case in which the four-dimensional theory has no six or five-

dimensional origin. The special Kähler spaces that are parametrised by the scalars have

been widely studied in the literature [9, 11]. In particular, in [21] the following possible

non-compact symmetric spaces were given:

SU(n
(4)
V , 1)/[SU(n

(4)
V ) × U(1)] (2.10)

SO(n
(4)
V − 1, 2)/[SO(n

(4)
V − 1) × SO(2)] ⊗ SU(1, 1)/U(1) (2.11)

[SU(1, 1)/U(1)]3 (n
(4)
V = 3) (2.12)

Sp(6, R)/U(3) (n
(4)
V = 6) (2.13)

SU(3, 3)/S[U(3) × U(3)] (n
(4)
V = 9) (2.14)

SO∗(12)/U(6) (n
(4)
V = 15) (2.15)

E7(−26)/E6 × SO(2) (n
(4)
V = 27) . (2.16)

In the case in which the theory has a five-dimensional origin, the manifold that the

scalars parametrise is called very special Kähler [22].
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Finally, we perform the reduction to three dimensions. In three dimensions an irre-

ducible spinor has two real components, and thus theories with eight supersymmetries are

called N = 4. In three dimensions, gravity is not a propagating degree of freedom, while

vectors are dual to scalars. The N = 4 hyper-multiplet in three dimensions consists of four

real scalars and four Majorana spinors. The dimensional reduction of the six dimensional

theory to three dimensions gives gravity coupled to the real scalars φ̃, and thus the bosonic

field content is

(eµ
a, φ̃(4n

(3)
H )) (2.17)

where n
(3)
H is the number of hyper-multiplets, and in case of reduction from 6 dimensions,

n
(3)
H = n

(6)
T + n

(6)
V + 3. The scalars parametrise quaternionic manifolds. If the three-

dimensional theory has a four-dimensional origin, the corresponding manifold is called

special quaternionic, while is it also has a five-dimensional origin it is called very special

quaternionic. The quaternionic symmetric spaces are

USp(2n
(3)
H , 2)/[USp(2n

(3)
H ) × USp(2)] (2.18)

SU(n
(3)
H , 2)/[SU(n

(3)
H ) × SU(2) × U(1)] (2.19)

SO(4, n
(3)
H )/[SO(4) × SO(n

(3)
H )] (2.20)

E6(2)/[SU(6) × SU(2)] (n
(3)
H = 10) (2.21)

E7(−5)/[SO(12) × SU(2)] (n
(3)
H = 16) (2.22)

E8(−24)/[E7 × SU(2)] (n
(3)
H = 28) (2.23)

F4(4)/[USp(6) × SU(2)] (n
(3)
H = 7) (2.24)

G2(2)/SO(4) (n
(3)
H = 2) . (2.25)

We refer the reader to reference [23] for a review on the scalar manifolds of theories

with eight supersymmetries. The theories with a homogeneous scalar manifold have been

labelled by L(q, P ) for q ≥ −3 and P ≥ 0 integers. In the case q = 4m, for integer m,

there is an extra possibility which will not be considered here. The parameters q and P

are related to the number of tensor and vector multiplets in the parent six dimensional

theory by n
(6)
T = q + 1 and n

(6)
V = PDq+1. Here Dq+1 is the dimension of the irreducible

representation of the Clifford algebra in q + 1 dimensions with positive signature, and

takes the values Dq+1 = 1 for q = −1, 0, Dq+1 = 2 for q = 1, Dq+1 = 4 for q = 2,

Dq+1 = 8 for q = 3, 4, Dq+1 = 16 for q = 5, , 6, 7, 8 and Dq+8 = 16Dq [12, 18].

3. Relationship between Kac-Moody algebras and

theories with eight supersymmetries

A central role in our considerations will be played by the various real forms of a given Lie

algebra defined over the complex numbers. The classification of semi-simple Lie algebras

was originally carried out when the algebras are taken to be over the complex numbers as

this is a complete field. Consequently, the end result of the classification, i.e. the Dynkin

diagram, does not specify a preferred real form of the algebra. A real form of a Lie algebra

– 6 –
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is just a choice of generators for which the structure constants are real. Given such a choice

we can then take the algebra to be defined over the real numbers. For example, the A1

Dynkin diagram, which is a single dot, corresponds to the complex algebra SL(2, C) which

has two real forms; the compact SU(2) algebra and the non-compact SL(2, R) algebra. The

representations of these groups have different properties and this can lead to very different

physical effects depending on which real form is adopted. The possible third real form

SU(1, 1) is included as it is isomorphic to SL(2, R). All real forms of the finite dimensional

semi-simple Lie algebras were found by Cartan in 1914. Some references are [24, 25].

Any finite dimensional complex semi-simple Lie algebra possesses a unique real form

in which all the generators are compact. Compact means that the scalar product of the

generators, defined by the Killing form, is negative definite. The negative rather than the

usually preferred positive nature is just a result of the particular choice of constant in

the Killing form usually adopted by mathematicians. It is given by taking the generators

Ûα = i(Eα + E−α), V̂α = (Eα − E−α) and Ĥa = iHa, where α is any positive root, Eα

the corresponding generator and Ha the elements of the Cartan sub-algebra. The compact

nature of the generators follows in an obvious way from the fact that the only non-zero

scalar product between Eα and E−α is given by (Eα, E−α) = 1 and (Ha,Ha) = −(αa, αa) <

0. We refer to this compact algebra as Gcp and to its complexification as GC.

By considering all involutions of the unique compact real form Gcp one can construct

all other real forms of the complex Lie algebra under consideration. In particular, the

real forms are in one to one correspondence with all those involutive automorphisms of

the compact real algebra. By an involution we mean a map which is an automorphism

(θ(AB) = θ(A)θ(B) ∀ A,B ∈ G) which squares to one (θ2 = 1). These are also called

‘Cartan involutions’.

Given an involution θ we can divide the generators of the compact real form Gcp into

those which possess +1 and −1 eigenvalues of θ. We denote these eigenspaces by

Gcp = K⊕ P̂ (3.1)

respectively. Since θ is an automorphism it preserves the structure of the algebra and as a

result the algebra when written in terms of this split must take the generic form

[K, K] ⊂ K, [K, P̂ ] ⊂ P̂ , [P̂ , P̂ ] ⊂ K. (3.2)

From the generators P we define new generators P = −iP̂, whereupon the algebra now

takes the generic form

[K, K] ⊂ K, [K, P] ⊂ P, [P, P] ⊂ (−1)K. (3.3)

Thus we find a new real form of the algebra in which the generators K are compact while

the generators P are non-compact. This follows from the fact that all the generators in

the original algebra are compact and so have negative definite scalar product (the Killing

form) and as a result of the change all the generators P will have positive definite scalar

products. Clearly, the new real form has maximal compact sub-algebra K and this is just

the part of the algebra invariant under θ.

– 7 –
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As each real form corresponds to an involution θ we can write the corresponding real

form as Gθ. For the compact real form the involution is just the identity map I on all

generators and so we may write Gcp = GI . The number of compact generators is dim(K)

and the number of non-compact generators is dimG − dimK. The character σ of the

real form is the number of non-compact minus the number of compact generators and so

σ = dimG − 2dimK.

An important real form can be constructed by considering the involution θc which

is a linear operator that takes Eα ↔ −E−α and Ha → −Ha. Clearly, the generators of

the compact real form transform as V̂α → V̂α, Ûα → −Ûα and Ĥa → −Ĥa, where

V̂α = Eα − E−α, Ûα = Eα + E−α and Ĥa = Ha. Using this involution we find a real form

with generators

Vα = V̂α, Uα = −iÛα, Ha = −iĤa . (3.4)

The Vα remain compact generators while Uα and Ha become non-compact. By abuse of

notation we are denoting with Ha both the Cartan generators of the complex Lie algebra

and the Cartan generators in this particular real form. The maximal compact sub-algebra

is just that invariant under the Cartan involution. Clearly, the non-compact part of the

real form of the algebra found in this way contains all of the Cartan sub-algebra and it

turns out that it has the maximal number of non-compact generators of all the real forms

one can construct. It is therefore called the maximally non-compact real form or split real

form. Using the above notation we can write it as Gθc
. For example, the complex Lie

algebra Dn has SO(2n) as its unique compact real form and SO(n, n) as its maximally

non-compact real form. For E8 the maximally non-compact form is denoted by E8(8) and

its maximal compact subgroup is SO(16). The number in brackets is the character of the

real form (8 = 248 − 2.120) and we will use this notation for all the real forms of the En

algebras. Taking different non-trivial involutions we find different real forms. For example,

for SO(p, q) the maximal compact sub-algebra is SO(p) ⊗ SO(q) while for the real form of

E8 denoted by E8(−24) the maximal compact sub-algebra is E7 ⊗ SU(2).

As the involution θ is an automorphism it preserves the Killing form and as a result

(θ(X), θ(Y )) = (X,Y ) = −(X,Y ) = 0 if X ∈ K and Y ∈ P. It also follows form the above

discussion that (X, θ(Y )) is negative definite. In fact one can define a Cartan involution

to be an involution for which this is true. In the past papers of the authors one has so

far mainly dealt with the split case, and the Cartan involution for this real form has been

called ‘the Cartan involution’, as no other one was considered.

As we have discussed the Cartan sub-algebra H of Gθ can be split between compact

generators K and non-compact generators P. Let us denote the Cartan sub-algebra ele-

ments in P by HP = H ∩ P. The real rank rθ of Gθ is the dimension of HP . Clearly, it

takes its maximal value for the split case where it equals the rank of Gθ.

Rather than consider the action of the involution on the generators of the algebra it

is more convenient to consider its action on the space of roots ∆ of the algebra. In fact

this is equivalent to its action on the Cartan subalgebra H as the roots belong to the dual

space H∗, but as we will see it is more illuminating. We can divide the space of roots into

those that have eigenvalues ±1; ∆c = {α; θ(α) = α} and ∆s = {α; θ(α) = −α}. The roots

– 8 –
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are associated with the underlying algebra and so can not in general be divided up into

eigenspaces of θ and so there are roots that give neither ±1 under the action of θ, but a

combination of roots.

The action of θ, and so the determination of the real form of a given Lie algebra, can be

encoded on the so called Tits-Satake diagram. This is the Dynkin diagram of the complex

algebra GC with some of the nodes coloured black. A node is black if its corresponding

simple root is in ∆c i.e. θ(αa) = αa and the rest of the nodes are white. The map Pθ

defined by Pθ(α) = 1
2(α−θ(α)) is a projection P 2

θ = Pθ. Clearly, if β ∈ ∆c, then Pθ(β) = 0.

In fact Pθ(α) is just the projection or restriction of the root α onto the subspace H∗
P .

Given a Tits-Satake diagram we know the action of θ on the simple roots that are

black and one can deduce its action on all the simple roots using the fact that θ2 = 1 and

that the action of θ preserves the Cartan matrix. The latter follows from the fact that θ is

an automorphism, so preserves the Killing form and that the Cartan matrix is constructed

from the scalar product on the roots induced from the Killing form on the dual space to

the roots, that is the Cartan sub-algebra. Hence from the Tits-Satake diagram we find the

action of θ on the roots.

An exception to the black and white dots occurs when two simple roots have the same

projection, i.e. Pθ(αa) = Pθ(αb). In this case we can connect nodes a and b by an arrow.

Having the action of θ on the roots we can deduce the action on the generators by

taking θ(Ha) = Ha if the label a corresponds to a black dot. This follows from the action

on the corresponding simple root, indeed the action of θ on all of H follows from the its

action on the dual space of roots. We also take θ(Eα) = cαEθ(α) where cα = ±1. The

assignment of the constants cα is such that θ(Eα) = (Eα) if α ∈ ∆c and θ(Eα) = −(E−α)

if α ∈ ∆s. The action of the remaining generators must be consistent with the fact that θ

is an automorphism, acting on [Eα, Eβ ] = Nα,βEα+β we find that

cα+βNα,β = cαcβNθ(α),θ(β) . (3.5)

The black nodes are just the ones whose corresponding Cartan sub-algebra element is com-

pact and obviously the white nodes are those corresponding to the non-compact elements.

Clearly, for the maximal non-compact real form all the nodes are white as all the elements

of the Cartan sub-algebra are non-compact while for the compact real form all the nodes

are black.

Given a real form of a complex Lie algebra, any element g of the associated group

can be expressed as g = gcgnagr where gc is in the maximal compact sub-group, gna is the

maximal commuting non-compact subalgebra, that is HP and gr is the group whose Lie

algebra consists of the generators which have the positive roots with respect to HP . This

is the Iwasawa decomposition a description of which can be found in reference [24]. Let

us be a little more precise. Given the generators of the real algebra whose roots are the

eigenvectors of the full Cartan sub-algebra H, we can consider the restriction of the roots

to be just the eigenvalue components corresponding to the Cartan sub-algebra generators

in HP . We denote this restricted root space by Σ. We can think of Σ as the dual of the

space HP . Given an ordering in Σ, or equivalently HP , we can then split the roots in

Σ into those that are positive denoted Σ+ and the rest which are negative, denoted Σ−.
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The group gr is just that generated by the Lie algebra consisting of all generators whose

restricted root is in Σ+. The action of θ sends a restricted root λ to −λ.

For the case of a maximally non-compact form of the algebra, all the Cartan generators

are non-compact and so gna is just the Cartan sub-algebra while gr is generated by all

positive root generators of the complex algebra, that is all the positive root generators

in the usual sense. As such, this is the decomposition for which gnagr is just the Borel

sub-group. The important point to note is that it is only for the maximally non-compact

real form that all Cartan subalgebra elements of the original algebra appear in gna and all

simple roots can be generated from multiple commutators of the generators appearing in

gr.

The construction of non-linear realisations based on a given algebra is carried out with

respect to a particular real form of a given algebra and the choice of a local sub-algebra.

The choice of local subalgebra affects the field content and the way the symmetries are

realised. The local subalgebra is for the cases considered in this paper always chosen to be

the maximal compact subalgebra of a the real form being used. Clearly, the dimension and

the properties of this local sub-algebra change from one real form to another. For example,

for SO(n, n) the maximal compact sub-algebra is SO(n) ⊗ SO(n) while for SO(p, q) it is

SO(p) ⊗ SO(q). Clearly, even if p + q = 2n, p 6= q the dimensions of the two cosets are

different and so is the physics resulting from the two non-linear realisations based on the

two algebras. In particular, only for SO(n, n) do all the Cartan subalgebra generators

appear in the coset and so correspond to fields in the non-linear realisation. So far, all

algebras considered in the context of the eleven dimensional supergravity, IIA and IIB

supergravity and their formulations in lower dimensions were the maximal non-compact

form of real algebras and so the group element which appears in the non-linear realisation

can be chosen to be that of the Borel subgroup. This is also the case for D = 10, N = 1

supergravity theory coupled to no or one vector multiplet, but for more than one vector

multiplet coupled to N = 1 supergravity one must use symmetry algebras that are not the

maximally non-compact real form [7].

Important for the original understanding that E11 is a symmetry of the low energy

effective actions of string theory was the formulation of the corresponding supergravity

theories as non-linear realisations of an algebra G11. This latter algebra was not a Kac-

Moody algebra, but it was conjectured that the corresponding theory was associated with

the smallest Kac-Moody algebra that contained all the generators, and their commutation

relations, of the algebra G11 that arose in the non-linear realisation of the supergravity

theory under study. However, unlike G11, the conjectured Kac-Moody algebra contains

many more generators. As a result the non-linear realisation of the Kac-Moody algebra

contains many more fields than the original non-linear realisation and so only at the lowest

levels do the two coincide [1, 19]. As noted above it was realised that all the Kac-Moody

algebras found by considering maximal supergravities [1], effective bosonic string actions [1]

and gravity [4] in this way were very extended algebras [5]. Given a semi-simple finite

dimensional algebra G one constructs the very extended algebra G+++ by adding to the

Dynkin diagram of G first the affine node and then the over extended node, which is

connected to the affine node by a single line, and finally the very extended node, which
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is connected to the over extended node by a single line [5]. Thus G+++ has rank three

more than G. If a theory is a non-linear realisation of G+++, the formulation of the three

dimensional theory is given by carrying out the decomposition of G+++ by deleting the

affine node which is usually labeled the node three. This breaks G+++ into G ⊗A2. The

second factor is the algebra SL(3) and it corresponds to the presence of gravity in the

three-dimensional theory. G is the internal symmetry of the three dimensional theory.

In particular, the field content of the non-linear realisation is found by carrying out the

decomposition of G+++ into G ⊗ A2 and taking into account the local sub-algebra as

described above. Clearly, at the lowest level we will find in addition to gravity a set of

scalars which are a non-linear realisation of G with a local sub-algebra H that is just the

local sub-algebra of the full non-linear realisation which lies in G. In fact the scalars are

the only dynamical degrees of freedom of the three dimensional theory.

Clearly if we suspect that a theory in dimension D has an underlying very extended

Kac-Moody algebra we can reduce it to three space-time dimensions. Then we can find the

coset to which the scalars belong and deduce that the corresponding very extended Kac-

moody algebra for the theory in D dimensions is G+++ if the scalars in three dimensions

are a non-linear realisation constructed from the algebra G. The Kac-Moody algebra now

determines uniquely all the field content of the theory in D dimensions, it being just

a consequence of the decomposition of G+++ into the algebra that results by deleting

the node usually called D in the Dynkin diagram. The first test of the conjectured very

extended Kac-Moody symmetry is to see if the field content it predicts actually agrees with

the content of the theory under consideration in the dimension of interest. If this precise

test is not true then the conjecture that the theory has an underlying very extended Kac-

Moody algebra is not true.

The scalars in three dimensions will be a non-linear realisation, or coset, of a particular

real form of G and the local sub-algebra H will be the maximal compact sub-algebra. We

can then conjecture a G+++ that has the corresponding real form. As explained above the

real form of an algebra can be encoded in its Dynkin diagram by colouring some of the

nodes black. This means that the corresponding Dynkin diagram of G+++ will have all

white dots except for some black dots in the G part of the Dynkin diagram which coincide

with those found in the internal symmetry G of the three dimensional theory. Thus not

only can we deduce from three dimensions the very extended Kac-Moody algebra, but also

its real form.

Let us explain how this works with some examples. The theory with eight supersymme-

tries which in six dimensions has nine tensor multiplets (n
(6)
T = 9) and sixteen (n

(6)
V = 16)

vector multiplets is associated with L(8, 1). In three dimensions we find that the scalars

belong to the non-linear realisation E8(−24) where the subscript indicates that this is the

real form which has the maximal compact sub-algebra E7 ⊗ SU(2). This is the coset space

in equation (2.23). Thus we conjecture that this theory in six dimensions has an exten-

sion such that it is the non-linear realisation of E+++
8(−24) with the real form in which nodes

labelled 7, 8, 9 and 11 are black as in figure 1.

The six dimensional theory with eight supersymmetries with five tensor multiplets

(n
(6)
T = 5) and eight (n

(6)
V = 8) vector multiplets is associated with L(4, 1). In three
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Figure 1: The E+++
8(−24) Dynkin diagram corresponding to L(8, 1).
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Figure 2: The E+++
7(−5) Dynkin diagram corresponding to L(4, 1).
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Figure 3: The E+++
6(2) Dynkin diagram corresponding to L(2, 1).

dimensions we find that the scalars belong to the non-linear realisation E7(−5) where the

subscript indices that this is the real form which has the maximal compact sub-algebra

SO(12) ⊗ SU(2). This is the coset space in equation (2.22). Thus we conjecture that this

theory in six dimensions has an extension such that it is the non-linear realisation of E+++
7(−5)

with the real form in which nodes 7, 9 and 10 are black as in figure 2.

Alternatively, the six dimensional theory with three tensor multiplets (n
(6)
T = 3) and

four vector multiplets (n
(6)
V = 4), associated with L(2, 1), when reduced to three dimensions

has scalars which belong to the coset constructed from E6(2) which has maximal compact

subgroup SU(6) ⊗ SU(2). This is the coset space in equation (2.21). As a result we

conjecture that this theory is associated with the non-linear realisation of E+++
6(2) . The

corresponding Dynkin diagram is shown in figure 3.

Other two examples concern the six dimensional theories with eight supersymmetries

with one tensor multiplet and P vector multiplets, associated with L(0, P ), that when

reduced to three dimensions have scalars parametrising a coset of SO(P + 4, 4) with local

subgroup SO(P+4)⊗SO(4), as in equation (2.20). For P even, the conjectured Kac-Moody

algebra is D+++
P

2
+4(4)

, and the corresponding Dynkin diagram is shown in figure 4. For P
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Figure 4: The D+++
P

2
+4(4)

Dynkin diagram corresponding to L(0, P ) (P even).
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Figure 5: The B+++
P−1

2
+4(4)

Dynkin diagram corresponding to L(0, P ) (P odd).

odd, the conjectured Kac-Moody algebra is B+++
P−1

2
+4(4)

, whose Dynkin diagram is shown in

figure 5.

The theories giving rise to the coset spaces in equations (2.24) and (2.25) have already

been conjectured in [6] to be associated to the F+++
4(4) and G+++

2(2) non-linear realisations.

These cases, like the L(0, 0) and L(0, 1) cases above, are special because the corresponding

Lie algebra is maximally non-compact. The six-dimensional theory corresponding to the

F+++
4(4) non-linear realisation has two tensor multiplets and two vector multiplets and is

associated with L(1, 1). The F+++
4(4) Dynkin diagram is shown in figure 21. The theory

corresponding to the G+++
2(2) non-linear realisation can not be uplifted to six dimensions,

as it is evident from the Dynkin diagram of figure 22. This theory corresponds to pure

supergravity in five dimensions.

The L(−3, P ) theory, corresponding to the three-dimensional coset of equation (2.18),

has a conjectured Kac-Moody symmetry C+++
P+2 whose Dynkin diagram is shown in figure

19. As it is evident from the diagram, this theory can not be uplifted to any dimension

above three. Finally, the L(−2, P ) theory, corresponding to the three-dimensional coset of

equation (2.18), has a conjectured Kac-Moody symmetry A+++
P+3 whose Dynkin diagram is

shown in figure 20. The diagram makes it manifest that the highest dimension in which

this theory can live is four.

In the next section we will analyse the G+++ non-linear realisations and show that

their field content exactly agrees with the corresponding supergravity theories. We will

consider the cases L(8, 1), L(4, 1) and L(0, P ) (P even) explicitly, corresponding to the

E+++
8(−24), E

+++
7(−5) and D+++

P

2
+4(4)

non-linear realisations respectively, but our results apply to

all the other cases as well.
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Figure 6: The E+++
8(−24) Dynkin diagram corresponding to the 6-dimensional L(8, 1) theory. The

internal symmetry group is SO(9, 1).
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Figure 7: The E+++
8(−24) Dynkin diagram corresponding to the 5-dimensional L(8, 1) theory. The

internal symmetry group is E6(−26).
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Figure 8: The E+++
8(−24) Dynkin diagram corresponding to the 4-dimensional L(8, 1) theory. The

internal symmetry group is E7(−25).

4. Field content of real forms of G+++

In this section we will test the conjectured Kac-Moody algebras by computing their low

level field content and seeing if it agrees with the actual field content of the theory it is

associated with.

4.1 E+++
8(−24)

and L(8, 1)

At first sight it would appear that this conjectured Kac-Moody algebra for L(8, 1) must

be wrong as the ten and eleven dimensional maximal supergravities also have E+++
8 as

their corresponding non-linear realisation. The former uses the maximally non-compact

real form, denoted by E+++
8(8) , which has a Dynkin diagram in which all of its nodes are

white, while for the L(8, 1) theory we are using the real form E+++
8(−24) as illustrated in the

Dynkin diagram of figure 1. As we will see in the following, the fact that the two real forms

are different leads to different field contents for the corresponding non-linear realisations.

The six dimensional theory is obtained by taking the decomposition of E+++
8(−24) cor-

responding to deleting node six in figure 1 leaving the algebra D5 ⊗A5 as shown in figure

6. The latter factor is the algebra SL(6) and it leads in the non-linear realisation to six

dimensional gravity. The internal symmetry is the real form SO(9, 1) as this corresponds
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to the positions of the black dots in the D5 part of the Dynkin diagram. The maximal

compact subgroup of SO(9, 1) is SO(9) and so the scalars in six dimensions belong to the

non-linear realisation of SO(9, 1) with local subgroup SO(9).

As discussed above to find the theory, in say D dimensions, arising from the non-linear

realisation of a very extended algebra G+++ we must first carry out the decomposition

of G+++ into the algebra that remains after the deletion of an appropriate node in the

Dynkin diagram of G+++. The resulting set of generators is independent of which real

form we take for G+++. The non-linear realisation consists of group elements g which are

subject to transformation g → gh where h is a local transformation that belongs to the

compact subalgebra. As noted in section three the general group element can be written

as g = gcgnagr and so the group element can be brought to the form g = gnagr using this

local transformation. The parameters that appear in the latter group element are just the

fields of the theory. In the cases studied in this paper the deleted node, labelled c, is a

white node and so its corresponding Cartan sub-algebra element Hc is in HP . As such the

restricted roots contain a component that is the eigenvalue of Hc. If we adopt an ordering

for HP such that Hc is the first element then a restricted root will be positive if it arises

from a generator which has positive level with respect to the deleted node, i.e. mc > 0. It

follows that the theory will contain fields corresponding to all generators that have positive

level with respect to the deleted node. In fact, this is the same set of fields that occurs in

the split case or indeed for any other real form. We note that this consideration does not

apply for level zero generators.

In view of the last remark, the form fields can be computed using techniques similar to

those of reference [26] and in the E+++
8 case being studied here, the form fields that arise

in the E+++
8(−24) non-linear realisation are the same as for the maximal compact real form

E+++
8(8) and can for example be read off from table 5 of reference [27].

The 1-forms of E+++
8(−24) that arise in six dimensions form the spinor representation of

SO(9, 1), i.e. the 16. The 2-forms belong to the 10-dimensional representation of SO(9, 1).

We recall that in any G+++ non-linear realisation every field appears together with its

dual. As in six dimensions 2-forms are dual to 2-forms, in this case the 2-forms in the

10 of SO(1, 9) must satisfy (anti)self-duality conditions. The rank three forms of E+++
8(−24)

belong to the 16 representation of SO(9, 1). These fields are the duals of the 1-forms. The

4-forms are in the 45 representation of SO(9, 1), that is the adjoint. These are duals to

the 9 scalars. The apparent contradiction arising from having more 4-forms than scalars is

resolved by remembering that the dynamics is invariant under the local sub-algebra which

at the lowest level is SO(9). Decomposing the 45 of SO(1, 9) to the SO(9) sub-algebra leads

to 9⊕ 36. The dynamics will set the field strength of the 36 to zero and the remaining 9

will be dual to the scalars.

Thus we find that in six dimensions the non-linear realisation of E+++
8(−24) algebra pre-

cisely predicts

ha
b(1), Aa(16), Aa1a2(10), Aa1a2a3(16), , Aa1...a4(45) (4.1)

where the numbers in brackets denote the representations of SO(9, 1) and we find in addition

the nine scalars mentioned above. In the actual six dimensional theory associated with
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L(8, 1) we have nine tensor multiplets (n
(6)
T = 9) and sixteen (n

(6)
V = 16) vector multiplets

and from equation (2.1) in section two we can read off the field content. The find that we

have precise agreement. The non-linear realisation of E+++
8(−24) also predicts the number of

5-forms Aa1...a5 to be in the 144 representation of SO(9, 1) so predicting the presence of

144 gauged supergravities for this theory and the number of space-filling 6-forms Aa1...a6

to be in the 320 ⊕ 126 ⊕ 10 representation.

To find the five dimensional theory predicted by E+++
8(−24) we must delete node five in

figure 1 to find the algebras E6(−26) ⊗ SL(5) as shown in figure 7. The internal symmetry

is therefore E6(−26) as the distribution of the black dots shows. This real form of E6 has

F4 as its maximal compact subgroup. As a result there are 26 scalars in five dimensions

and they belong to the non-linear realisation of E6(−26) with local subgroup F4. The SL(5)

factor leads in the non-linear realisation to the field ha
b, a, b = 1, 2, . . . , 5 which is five

dimensional gravity. The E+++
8(−24) algebra leads to 1-forms and 2-forms that are in the 27

and 27 representations respectively of E6(−26). The 2-forms are dual to the 1-forms. There

are 78 3-forms in the adjoint of E6 which are dual to the 26 scalars once one takes account

of the above comments.

Hence in five dimensions the non-linear realisation of E+++
8(−24) algebra precisely predicts

ha
b(1), Aa(27), Aa1a2(27), Aa1a2a3(78) (4.2)

where the numbers in brackets denote the representations of E6(−26) and we have in addition

the 26 scalars mentioned above. This is precisely as required as n
(5)
V = 9+ 16+ 1 = 26 and

the actual content of the five dimensional L(8, 1) theory is given in equation (2.2). Finally

we also have 4-forms Aa1...a4 which belong to the 351 of E6(−26) and so we expect this

theory to have 351 gauged extensions. We also have 5-forms that belong to the 1728⊕27.

In four dimensions we delete the node four of the E+++
8(−24) Dynkin diagram in figure

1 to leave E7(−25) ⊗ SL(4). This leads to the diagram of figure 8. The real form E7(−25) of

E7 that arises is the one which has maximal compact sub-algebra E6⊗U(1). As such there

are 54 scalars which belong to the non-linear realisation of E7(−25) with local sub-algebra

E6 ⊗ U(1). In this non-linear realisation the 1-forms belong to the 56 representation

of E7(−25). They lead to 28 vector fields together with their magnetic duals. The 2-

forms belong to the 133 representation of E7(−25), which is the adjoint, and are dual to

the 54 scalars in the sense discussed above. Indeed, the 133 of E7(−25) breaks into the

(27 ⊕ 27) ⊕ (78 ⊕ 1) of E6. The 2-forms in the first bracket are dual to the scalars while

the fields strengths of the latter will vanish in the dynamics.

Hence in four dimensions the non-linear realisation of E+++
8(−24) algebra precisely predicts

ha
b(1), Aa(56), Aa1a2(133) (4.3)

where the numbers in brackets denote the representations of E7(−25) and we have in addi-

tion the 45 scalars mentioned above. Examining equation (2.3) we see that this is precisely

the correct field content of the L(8, 1) theory in four dimensions. The E7(−25) non-linear re-

alisation also predicts that the deformations forms Aa1a2a3 belong to the 912 representation

of E7(−25).
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Figure 9: The E+++
8(−24) Dynkin diagram corresponding to the 3-dimensional L(8, 1) theory. The

internal symmetry group is E8(−24).

Finally we consider the formulation of the E+++
8(−24) theory in three dimensions. Delet-

ing node three in figure 1 we find the algebra E8(−24) ⊗ SL(3), as shown in figure 9. The

scalars belong to non-linear realisation of E8(−24) which has the maximal compact sub-

algebra E7 ⊗ SU(2). This is the correct coset, but this, unlike all the above results in

higher dimensions, was guaranteed by the way in which the very extended algebra and its

real form were guessed.

It is also clear why the L(8, 1) theory only exists in six dimensions and less. The gravity

line is the AD−1 part of the Dynkin diagram and, as the name suggests, it is associated

with gravity in the D dimensional theory under study. To actually lead to gravity it must

contain the real form of AD−1 that is SL(D) as this form contains all the Cartan sub-

algebra elements as non-compact elements and so, in the non-linear realisation, it leads to

the diagonal components of the metric. Put another way, if we have some other real form

then some of the diagonal components of the metric will be missing. As such we can not

have a gravity line that contains a black dot. We also demand that the deleted dot be

white in view of the considerations at the beginning of this section. As such the gravity

line, which must begin from the node labelled one, and the deleted node must all be white

nodes and looking at figure 1 one see that the maximal dimensions is six. Clearly, this

applies to all the real forms of the very extended algebras considered in this paper and it

is amusing to verify the upper dimensions is indeed six for the Dynkin diagram of figures

1–5.

4.2 E+++
7(−5) and L(4, 1)

Let us now turn our attention to the theory associated with L(4, 1). This six-dimensional

supersymmetric theory has 5 tensor multiplets and 8 vector multiplets and as argued above

should be associated with the very extended algebra E+++
7(−5).

To find the six dimensional theory predicted by the E+++
7(−5) non-linear realisation we

must delete node six as in figure 2. This leads to the Dynkin diagram of figure 10. The

internal symmetry algebra is SO(5, 1) ⊗ SU(2). We note that SO(5, 1) is isomorphic to

SU∗(4). The maximal compact subalgebra of SO(5, 1) is SO(5), while SU(2) is compact.

Thus we find 5 scalars which belong to the coset SO(5, 1) with local sub-algebra SO(5).

The non-linear realisation of E+++
7(−5) has 1-forms that belong to the (4,2) representation

of SO(5, 1) ⊗ SU(2). The 2-forms belong to the (6,1) representation of SO(5, 1) ⊗ SU(2)

which are all either self dual or anti-self dual. The 3-forms of E+++
7(−5) belong to the (4,2)

representation of SO(5, 1)⊗SU(2) and are the fields dual to the 1-forms. The 4-forms belong
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Figure 10: The E+++
7(−5) Dynkin diagram corresponding to the 6-dimensional L(4, 1) theory. The

internal symmetry group is SU(2) ⊗ SU∗(4).
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Figure 11: The E+++
7(−5) Dynkin diagram corresponding to the 5-dimensional L(4, 1) theory. The

internal symmetry group is SU∗(6).

to the (15,1) and (1,3) representations. The former decomposes into the representations

(5,1) and (10,1) of the local sub-group SO(5). The (5,1) fields are dual to the scalars

while the fields strengths of the latter as well as the (1,3) are set to zero.

To summarise, the non-linear realisation of E+++
7(−5) in six dimensions contains the forms

ha
b(1), Aa(4,2), Aa1a2(6,1), Aa1a2a3(4,2), Aa1...a4(15,1) ⊕ (1,3) (4.4)

where the numbers in brackets denote the representations of SO(5, 1)⊗SU(2) and we have

in addition the five scalars mentioned above. This is precisely the content of the L(4, 1) as

given in equation (2.1) with 5 tensor multiplets and 8 vector multiplets.

Finally we also predict that the 5-forms Aa1...a5 belong to the (4,2) ⊕ (20,2) repre-

sentation of SO(5, 1) ⊗ SU(2). The corresponding field strengths are dual to mass defor-

mations, and so we expect the same number of gauged supergravities. The space-filling

6-forms belong to the (64,1) ⊕ (10,3) ⊕ (6,3) ⊕ (6,1) ⊕ (6,1) representation.

To find the field content of E+++
7(−5) in five dimensions we must delete node five in

figure 2, as shown in figure 11. The resulting algebra is SL(5)⊗SU∗(6) where the maximal

compact subgroup of the latter factor is USp(6). The 14 scalars belong to the corresponding

coset. The forms fields in the non-linear realisation of E+++
7(−5) appropriate to five dimensions

are

Aa(15), Aa1a2(15), Aa1a2a3(35) . (4.5)

The numbers in brackets denote the SU∗(6) representations the form belongs to. This is in

precise agreement with the field content of the actual L(4, 1) theory in five dimensions as

can be seen by noticing that n
(5)
V = n

(6)
T +n

(6)
V +1 = 14 and examining equation (2.2). The

non-linear realisation also predicts 4-forms in the 105 ⊕ 21 and so we expect this number

of gauged supergravities. The space-filling forms predicted by the non-linear realisation

belong to the 384 ⊕ 105 ⊕ 15.
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Figure 12: The E+++
7(−5) Dynkin diagram corresponding to the 4-dimensional L(4, 1) theory. The

internal symmetry group is SO∗(12).
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Figure 13: The E+++
7(−5) Dynkin diagram corresponding to the 3-dimensional L(4, 1) theory. The

internal symmetry group is E7(−5).

The Dynkin diagram of the E+++
7(−5)

non-linear realisation appropriate to four dimen-

sions in shown in figure 12 where node four of figure 2 has been deleted. The remaining

algebra is SL(4) ⊗ SO∗(12). The 30 scalars belong to the coset of SO∗(12) with local

subgroup SU(6)⊗U(1). The form fields of this four dimensional non-linear realisation are

Aa(32), Aa1a2(66), Aa1a2a3(352), Aa1...a4(2079 ⊕ 462 ⊕ 66) . (4.6)

The numbers in brackets denote the SO∗(12) representations. The 1-forms do account for

the 16 vectors and their duals, while the 66 2-forms decompose into SU(6) representations

as 66 → 1 ⊕ 35⊕ 15 ⊕ 15. The 15 ⊕ 15 are dual to the scalars and the field strengths

of the remaining fields are set to zero. We expect 352 gauged supergravities, as they are

associated to the number of 3-forms predicted in the non-linear realisation.

Finally, we consider the three dimensional case. The Dynkin diagram of the three-

dimensional E+++
7(−5) non-linear realisation is obtained deleting node three in figure 2 and

leads to the diagram of figure 13. The remaining algebra is SL(3)⊗E7(−5), and the maximal

compact subgroup of the latter is SO(12)⊗SU(2). There are 64 scalars describing the non-

linear realisation of E7(−5) with local subgroup SO(12) ⊗ SU(2). One can compute the

field content in this case, finding precise agreement with the field content of the three

dimensional L(4, 1) supersymmetric theory. In particular, the 1-forms belong to the 133

that is the adjoint of E7, and are related to the scalars by duality.

4.3 D+++
P

2
+4(4)

and L(0, P ), P even

We now consider the L(0, P ) theory with P even, that was conjectured in section 3 to

correspond to the D+++
P

2
+4(4)

non-linear realisation. We refer to the appendix for a proper

explanation of the computations carried out in this subsection.

Deleting node six of the D+++
P

2
+4(4)

Dynkin diagram in figure 4 we find the diagram of

figure 14. The resulting algebra is SO(6, 6)⊗SO(P ). What is different to the above cases is
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that the deletion does not lead to an SL(D) algebra for the space-time part of the remaining

algebra, but rather SO(6, 6). As a result we must carry out a further decomposition of

this group to SL(6) to find the usual representations belonging to space-time, the adjoint

representation of SL(6) being associated with the gravity line of nodes one to five. The

decomposition of D+++
P

2
+4(4)

into representations of SO(6, 6) ⊗ SO(P ) is graded by the level

mc associated with node six. This is the number of times the simple root α6 occurs in

the root being considered in the decomposition. At level zero mc = 0 we just have the

adjoint representation of SO(6, 6)⊗SO(P ), that is (66,1) and (1, P(P−1)
2

) as well as (1,1).

The resulting fields are subject to transformations of the local subgroup which is SO(6) ⊗

SO(6)⊗SO(P ). Clearly, any scalar fields that might arise in (1, P(P−1)
2

), i.e. the adjoint of

SO(P ) are completely removed by the last part of the local subgroup as SO(P ) is compact

and thus coincides with its maximal compact subgroup. The adjoint representation of

SO(6, 6), i.e the (66,1) breaks into SL(6) representations as 66 → 35⊕ 15 ⊕ 15 ⊕ 1.

These correspond in the non-linear realisation to the graviton ha
b, that is 35 ⊕ 1, a rank

two anti-symmetric tensor Aa1a2 , that is 15, a scalar φ, that is (1,1), while the local sub-

algebra removes the 15 and the anti-symmetric part of ha
b. In fact the φ can be thought

of as belonging to the coset SO(1, 1) with trivial local subgroup.

The fields at the next levels can be found using the decomposition techniques of refer-

ence [26]. In fact, at the next level, mc = 1, there is always an obvious solution for any such

reduction of a very extended algebra. If the resulting algebra after the deletion of node D

is G1 ⊗G2 and the deleted node attaches to the node labelled i of the Dynkin diagram of

G1 and the node labelled j of the Dynkin diagram of G2, then one finds the representation

with highest weight µi ⊗λj where µi is the fundamental weight of G1 associated with node

i and similarly for λj . In all the cases above G1 = SL(D), the deleted node attaches to

the node labelled D − 1 and so i = D − 1 and so one finds the vector fields. As a result,

in the cases above, one finds that the vector fields belong to the representation of G2 with

the highest fundamental weight which is associated with the first node in G2. The reader

can verify that this is indeed the representation for the vectors in all the above cases.

In the case under study in this sub-section we find that the level one representation that

arises in the decomposition is µ5 ⊗ λ7. That is the 32 dimensional spinor representation of

SO(6, 6) which is valued as a P vector of SO(P ). The 32 dimensional spinor representation

in question decomposes into SL(6) representations as 32 → 6 ⊕ 20⊕ 6. The latter we

recognise as leading to the fields Aa1 , Aa1a2a3 and Aa1a2a3a4a5 respectively all in the vector

representation of SO(P ). The P 3-forms are the duals of the vectors which are also in the

vector representation. These are the only representations at level one.

At the next level, mc = 2, we find the following representations of SO(6, 6) ⊗ SO(P );

(µ4,1) ⊕ (1,2λ1) ⊕ (µ2, λ8) ⊕ (1,1) (4.7)

which are labelled in terms of their fundamental weights. We note that µ4 and µ2 are

the 495 and 66 dimensional representation of SO(6, 6) respectively. To find the fields with

space-time indices of SL(6) we must decompose the representations of SO(6, 6) into those

of SL(6). This can be achieved by also deleting node P
2 +7 in the SO(6, 6) Dynkin diagram.
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Figure 14: The D+++
P

2
+4(4)

Dynkin diagram corresponding to the 6-dimensional L(0, P ) theory (P

even) with P vector multiplets and one tensor multiplet. The non-abelian part of the internal

symmetry group is SO(P ), which is compact. The gravity line connects nodes 1, 2, 3, 4 and 5.

It is straightforward to see that having done this the number of space-time indices on the

generators, or fields, for a representations with highest weight µ =
∑

i qiµi of SO(6, 6) is

given by
∑

j(6 − j)qj + 6m = mc + 2l where l is the number of times the root of the node

labeled P
2 + 7 occurs in the way the highest weight state occurs and m is the number of

blocks of six indices. Among this set of states we are searching for forms, which excludes

the possibility of having blocks of six indices as well as other indices. If we focus on 2-form

fields Aa1a2 then as mc = 2 we must have l = 0 and so we are really only interested in the

A5 part of SO(6, 6). As such we have only one 2-form which occurs at the beginning of the

495 multiplet. The apparent scalars in the (1,2λ1) actually have a block of six indices and

so are not forms in the required sense.

Hence up to level mc ≤ 2 and for form fields of rank two or less we have the fields

ha
b(1), A(−)

a1a2
(1); A(+)

a1a2
(1), φ(1); Aa1(P), Aa1a2a3(P) (4.8)

where the numbers in brackets denote the representations of SO(P ). In fact as mc ≥ 3

we can not get more rank three or less forms at higher levels. These are the fields of six

dimensional supergravity plus one tensor multiplet and P vector multiplets. This is indeed

what we expect from the bosonic field content of the L(0, P ) theory.

In fact deleting node six is not the only way in which one can get a six dimensional

theory. One can also delete node five and then take the gravity line to contain nodes 1,2,3,4

and P
2 +7 in figure 4. This leads to the Dynkin diagram in figure 15. The remaining algebra

is then SL(6)⊗ SO(1, P + 1). It is straightforward to verify that at level zero, mc = 0, one

finds (1, (P+2)(P+1)
2

), (35,1) and (1,1). The last two correspond to gravity and the first

to the P + 1 scalars which belong to the coset SO(1, P + 1) with local sub-group SO(P ).

At level one, mc = 1, we find the representation (15,P + 2) which corresponds to 2-forms

Aa1a2 in the vector representation of SO(1, P + 1). At level two, mc = 1, we find the

representations (15, (P+2)(P+1)
2

) and (105,1). Consequently, in this model we find gravity,

P + 2 self or anti-self dual rank 2-forms and P + 1 scalars. As a result, the field content it

corresponds to is supergravity coupled to P + 1 tensor multiplets.

Upon dimensional reduction to five dimensions the theories corresponding to the

Dynkin diagrams of figure 14 and 15 give the same five dimensional theory as it arises
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Figure 15: The D+++
P

2
+4(4)

Dynkin diagram corresponding to the 6-dimensional L(0, P ) theory (P

even) with P + 1 tensor multiplets and no vector multiplets. The internal symmetry group is

SO(P + 1, 1). The gravity line connects nodes 1, 2, 3, 4 and P

2 + 7.
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Figure 16: The D+++
P

2
+4(4)

Dynkin diagram corresponding to the 5-dimensional L(0, P ) theory (P

even). The non-abelian part of the internal symmetry group is SO(P + 1, 1). The gravity line

connects nodes 1, 2, 3 and 4.

from deleting node five as is evident from the Dynkin diagram of figure 16. This is very

similar to the situation of the well known IIA and IIB theories in ten dimensions and the

way they fit into E+++
8 [2] giving rise to a unique nine dimensional theory upon dimensional

reduction. The four-dimensional theory corresponds to deleting node four and gives the

Dynkin diagram of figure 17, and finally the three-dimensional theory arises from deleting

node three and corresponds to the Dynkin diagram of figure 18. It is straightforward to

also confirm that by deleting nodes five, four and three we also recover the correct field

content of the bosonic sector of the L(0, P ) theories in five, four and three dimensions

respectively.

5. Discussion

In this paper we have given substantial evidence to the conjecture that all the theories with

eight supersymmetries that upon reduction to three dimensions give rise to scalars that

parametrise symmetric manifolds have an underlying very extended Kac-Moody symmetry.

In particular the bosonic sector of any of these theories can be derived from the non-

linear realisation. We have worked out in detail the L(8, 1), L(4, 1) and L(0, P ) (P even)

cases, and we have found that the bosonic field content of these supersymmetric theories

is precisely reproduced by the non-linear realisations.
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Figure 17: The D+++
P

2
+4(4)

Dynkin diagram corresponding to the 4-dimensional L(0, P ) theory (P

even). The internal symmetry group is SO(P + 2, 2) ⊗ SU(1, 1).
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Figure 18: The D+++
P

2
+4(4)

Dynkin diagram corresponding to the 3-dimensional L(0, P ) theory (P

even). The internal symmetry group is SO(P + 4, 4).

Crucial to our analysis are different real forms of very-extended Kac-Moody algebras.

We explain the real forms of the very extended Kac-Moody algebras that we conjecture

to describe the various theories with eight supersymmetries. These are presented using

Tits-Satake diagrams. Given this diagram we derive the generators of the very-extended

algebra and the field content of the corresponding non-linear realisation at low levels.

The analysis of the field content of the very extended algebras can also be done for

the other cases whose symmetries we have conjectured. In particular the other theories

that live in six dimensions and that give rise to three-dimensional theories whose scalars

parametrise symmetric spaces are L(0, P ) for P odd, corresponding to the B+++
P−1

2
+4

non-

linear realisation whose Dynkin diagram is shown in figure 5, L(2, 1), corresponding to

the E+++
6(2)

non-linear realisation whose Dynkin diagram is shown in figure 3, and L(1, 1),

corresponding to the F+++
4(4) non-linear realisation whose Dynkin diagram is shown in figure

21. One can also consider the theories associated to symmetric spaces in three dimen-

sions that can not be uplifted to six dimensions, namely L(−3, P ), corresponding to the

C+++
P+2 non-linear realisation whose Dynkin diagram is shown in figure 19, L(−2, P ), corre-

sponding to the A+++
P+3 non-linear realisation whose Dynkin diagram is shown in figure 20

(in particular N = 2 4-dimensional supergravity without matter corresponds to the case

P = −1 of L(−2, P )), and minimal five-dimensional supergravity, corresponding to the

G+++
2(2) non-linear realisation whose Dynkin diagram is shown in figure 22. The low-level

fields associated to all these Kac-Moody symmetries have been derived in [6], where it was
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Figure 19: The C+++
P+2 Dynkin diagram corresponding to L(−3, P ).
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Figure 20: The A+++
P+3 Dynkin diagram corresponding to L(−2, P ). All nodes from 6 to P + 4 are

black. Nodes 4 and P + 6 are connected by arrows, as well as nodes 5 and P + 5.
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Figure 21: The F+++
4(4) Dynkin diagram corresponding to L(1, 1).

also shown that the G+++
2(2) non-linear realisation describes the bosonic sector of minimal

five-dimensional supergravity and the F+++
4(4) non-linear realisation describes the bosonic

sector of the L(1, 1) theory.

In [28] it was shown that amongst the infinitely many fields in the non-linear realisa-

tion of E+++
8 , there is an infinite preferred set that describes all possible dualisations of

the on-shell degrees of freedom of the eleven-dimensional supergravity theory. This lifts

the infinite set of dualities that occur in two dimensions to eleven dimensions. All the

infinitely many remaining fields in eleven dimensions have at least one set of ten or eleven

antisymmetric indices, and therefore they do not correspond to on-shell propagating de-

grees of freedom. This is actually true for any Kac-Moody algebra [29], and thus it applies

to all the cases discussed in this paper as well. Therefore although the G+++ non-linear

realisations discussed in this paper have different real form to those considered before, it is

still the case that all the propagating degrees of freedom of these theories are the infinitely

many dual descriptions of the propagating fields of the corresponding supergravity.

Supersymmetric theories with eight supersymmetries contain exotic supersymmetry

representations, like for instance tensor multiplets in five dimensions. Although 2-forms

can be dualised to vectors in five dimensions in the absence of a potential, for theories with

non-trivial vacua this is no longer true. These multiplets are thus relevant in the context

of gauged supergravities. The fact that the G+++ non-linear realisation describes demo-

cratically all the fields and the corresponding duals means that it automatically encodes

either description.

In the democratic formulation that arises in the G+++ non-linear realisations, turning

on a mass deformation corresponds to having a D− 1 form whose field strength is dual to

the mass and thus is non-vanishing. In [27, 30] it was shown that all the massive deforma-
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Figure 24: The E+++
6(−14) Dynkin diagram.

tions of gauged maximal supergravities are encoded in the E+++
8 non-linear realisation. A

similar analysis was carried out in [31] for the case of theories with 16 supersymmetries,

corresponding to the B+++
m and D+++

m non-linear realisations of [7]. If this is true also

in the case of theories with eight supersymmetries, this would mean that the number of

D − 1 forms in D dimensions would give in all cases the number of massive deformations

of the supersymmetric theory. Moreover, given that the representation to which each form

belongs does not depend on the particular real form of G being used, this would mean

that for instance the L(8, 1) theory associated to E+++
8(−24)

would possess the same massive

deformations in a given dimension as the E+++
8(8) theory, that is associated to the maximally

supersymmetric theories. It would be interesting to investigate in this direction and in par-

ticular examine if the fact that the local subalgebras are different for different real forms

affects this result. It can happen that for theories with less than maximal supersymmetry

the deformations do not arise from a (D−1)-form, but are associated with symmetries that

only transform the fermionic sector of the theories [32]. However, we expect these defor-

mations to be accounted for by the very extended algebra once the fermions are included

in the non-linearly realised theory [29].

The fact that different real forms can be accounted for in the G+++ non-linear re-

alisation also leads to the conjecture that any supergravity theory with more than 16

supersymmetries can be described as a non-linear realisation for a suitable real form of a

very extended G+++. In particular, the scalars of the three-dimensional theory with 18

supersymmetries parametrise the coset F4(−20)/SO(9), and we conjecture that it is associ-

ated to the F+++
4(−20) non-linear realisation whose Dynkin diagram is shown in figure 23. As
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Figure 25: The Dynkin diagrams for A4, D5, E6, E7 and E8 with the labelling of the nodes as

in appendix A. The pattern for the forms of low rank is particularly apparent when one writes the

forms next to the nodes to which they are associated.

it is evident from the diagram, this theory only lives in three dimensions. The supergravity

theory with 20 supersymmetries is associated to the E+++
6(−14) non-linear realisation, whose

corresponding Dynkin diagram is shown in figure 24. The highest dimension in which

this theory exists is 4, as can be read from the diagram. Finally, the supergravity theory

with 24 supersymmetries corresponds to the E+++
7(−5) non-linear realisation whose Dynkin

diagram is shown in figure 2. This last example in particular shows that this real form

can lead to separate theories that only differ in the fermionic sector, so that there should

be two different ways of embedding the fermions in the E+++
7(−5) non-linear realisation, one

giving the L(4, 1) theory considered in this paper and one giving the supergravity theory

with 24 supersymmetries. Just like the L(4, 1) theory, supergravity with 24 supersymmetry

exists in six dimensions and below. The six-dimensional theory is called N = (2, 1), and

it was originally conjectured in [33] and later constructed in [34]. The reader can check

that the bosonic field content of this theory coincides with the one of the E+++
7(−5) non-linear

realisation derived in section 4.2. The bosonic string effective action generalised to D di-

mensions is associated with the non-linear realisation of the maximally non-compact form

of D+++
D−2 [1], and gravity in D dimensions is associated with the maximally non-compact

form of A+++
D−3 [4]. These are examples of real forms which lead to theories that are not

supersymmetric. More generally it is possible that particular real forms of very-extended

Kac-Moody algebras lead to theories with less than eight supersymmetries, or indeed no

supersymmetry at all.
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A. The calculation of the form fields

In this paper we have required the decomposition of the adjoint representation of certain

Kac-Moody algebras G+++ in terms of representations of AD−1 for suitable choices of D,

were AD−1 is a subalgebra of G+++. In this appendix we will show how to algebraically cal-

culate the representations of the generators with completely antisymmetrised AD−1 indices

arising in G+++. In the non-linear realisation of G+++ these generators are associated to

fields with the same AD−1 index structure. This work is carried out by the authors of this

paper in collaboration with Duncan Steele.

For no indefinite Kac-Moody algebra is a complete listing of the generators known.

However, there is a class of such algebras called Lorentzian algebras, which includes very

extended algebras, whose Dynkin diagram contains at least one node whose deletion leads

to Dynkin diagrams that are those for finite algebras with possibly one affine algebra, which

are more amenable to analysis. Indeed, one can analyse the content of such Lorentzian

algebras in terms of these remaining algebras [3]. Given a very extended algebra G+++

the field content of the non-linear realisation it leads to in a given dimension is found by

deleting a particular node and decomposing the adjoint representation of G+++ in terms

of the representations of the remaining algebra G+++
Del , corresponding the the remaining

Dynkin diagram after the deletion.

In this appendix we will restrict our attention to the cases where the deletion of the

node in the Dynkin diagram of G+++ corresponds to the decomposition of G+++ required

into representations of G+++
Del = G1 ⊗ G2 where G1 and G2 are finite dimensional semi-

simple Lie algebras. We will also restrict our attention to the case of simply laced algebras.

The discussion is the same as that given in reference [26], but the emphasis there was on

the content of the l1 multiplet, that is the brane charges, while here we want to focus on

the adjoint representation. In essence on takes m∗ = 0 in that paper. We will eventually

consider in detail the case in which G1 is AD−1. However, our methods are quite general

and apply to any semi-simple algebra G1, although whenG1 is not AD−1 one must carry out

a further decomposition to this latter algebra to find the field content in terms of familiar

representations. Nonetheless, the analysis carried out in this appendix is completely general

and applies to any G1 and G2 that can arise in the decomposition of G+++.

Let us label the deleted node by c. The simple roots αa of G+++ can be taken to be

the simple roots βi of G1, the simple roots of αi of G2 and the simple root αc corresponding

to the deleted node c. The latter simple root can be written as

αc = x− ν (A.1)

where x is a vector orthogonal to the root space of G1 ⊗G2 and

ν = −
∑

i

Acjµj −
∑

i

Aciλi . (A.2)
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Here Aab is the Cartan matrix of G+++, µi and λj the fundamental weights of G1 and G2

respectively and the nodes of these two algebras are labeled by the same indices i, j, . . .

for simplicity, although the ranges are different. The vector ν may be split into ν1 and ν2

which are the parts of ν belonging to the weight spaces of G1 and G2 respectively. The

value of x2 is determined by the requirement that α2
c = 2 = x2 + ν2.

Using the above expressions, we may write a general root α of G+++ as

α = mcαc +
∑

j

njβj +
∑

i

miαi = mcx− ΛG1 − ΛG2 (A.3)

where mi, ni and mc are positive or negative integers depending if the root α is a positive

or negative root. Also we define the above quantities as

ΛG1 = mcν1 −
∑

j

njβj , ΛG2 = mcν2 −
∑

i

miαi . (A.4)

We note that these two vectors belong to the weight spaces of G1 and G2 respectively.

We will call the integer mc the level and we will classify the result of the decomposition

into representations of G1 ⊗G2 by the level. The level is just the number of times the root

αc occurs in a particular root α being considered. All generators in the algebra G+++ can

be constructed from the multiple commutators of the Chevalley generators. As a result,

mc is just the number of times the Chevalley generator corresponding to node c occurs in

the multiple commutator which leads to the root of interest.

If a representation of G1 with highest weight
∑

i qiµi, where qi are the Dynkin indices

that must be positive integers or zero, occurs then this highest weight must occur as one of

the possible ΛG1 ’s that appear as the roots of theG+++ vary. As such, a necessary condition

for the adjoint representation of G+++ to contain the highest weight representation of G1

with Dynkin indices qj is that
∑

i

qiµi = mcν1 −
∑

i

niβi (A.5)

where ni denote the coefficients of the simple roots of the G1 algebra. Taking the scalar

product of both sides of this equation with µj implies that [26]
∑

i

qi(µi, µj) −mc(ν1, µj) = −nj . (A.6)

In these equations qi, mc and ni are positive integers and this places a bound on the possible

highest weights, or Dynkin indices qi that can occur.

Repeating this procedure for the G2 algebra, and using pi to denote the Dynkin indices,

we find that the representation of G2 with highest weight
∑

i piλi occurs provided
∑

i

piλi = mcν2 −
∑

i

miαi . (A.7)

Taking the scalar product with λk we find that [26]

mk = mc(ν2, λk) −
∑

i

pi(λi, λk) . (A.8)
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We note that the occurrence of the highest weights in G1 and G2 is correlated as equations

(A.6) and (A.8) contain the same level mc.

Squaring equation (A.3) gives [26]

α2 = x2m2
c +

∑

i,j

qiqj(µi, µj) +
∑

i,j

pipj(λi, λj) . (A.9)

Since α2 can only take the values 2, 0,−2, . . . this again places a constraint on the allowed

representations.

Our task is to analyse equations (A.6), (A.8) and (A.9) to find the possible represen-

tations of G1 ⊗ G2 that can occur in the decomposition of the adjoint representation of

G+++. Not every solution will correspond to a root in G+++ as these conditions are not

as strong as the construction of the algebra G+++ using its definition, that is the multiple

commutator of the Chevalley generators subject to the Serre relations. However, almost

all solutions are in fact present in G+++ although one does not discover the multiplicity of

the representations using these equations. In the above we have glossed over some subtle

points that are described in more detail in [35, 26]. The analysis of Lorentzian algebras in

terms of algebras that occur after the deletion of a node was proposed in [3], the notion of

level was inherent in the first E11 paper [1], but was spelt out explicitly together with the

constraints on the representations in the context of E10 in [36] and in general in [35].

At level one, that is mc = 1, equation (A.5) becomes
∑

i qiµi − ν1 = −
∑

i niβi which

lies in the negative root lattice. One obvious solution is that
∑

i qiµi = ν1. An identical

discussion applies to equation (A.7). Hence at level one we always have the representation

of G1 ⊗G2 with highest weights (ν1, ν2) in the adjoint representation of G+++.

We now specialise to the cases concerning the very extended algebra E11, or E+++
8 ,

whose Dynkin diagram in given in figure 1. The theory inD dimensions is found by deleting

the node labelled D and decomposing into representations of the remaining algebra which

is AD−1 ⊗ G2. The algebra AD−1, or SL(D), corresponds in the non-linear realisation to

the gravity sector. In these cases the deleted node is attached to the end of the Dynkin

diagram of the AD−1 subalgebra, that is to the node labeled D − 1. As a result we find

that ν1 = µD−1. The algebra G2 is in this case E11−D and the deleted node, D attaches

to the first node of this algebra which we label by one. By E5, E4 and E3 we mean D5,

A4 and A2 ⊗ A1 respectively. Once we delete node D we relabel the nodes of E11−D by

n→ n−D to have a sensible labelling from the view point of the subalgebra, as shown in

figure 25. Consequently, we have that ν2 = λ1. We find that

x2 = 1 +
1

D
− λ2

1 . (A.10)

The level one solution discussed just above is the representation with highest weight

(µD−1, λ1). This corresponds to a generator which is a vector under SL(D) and belongs to

the fundamental representation with highest weight λ1 under E11−D.

Let us first analyse equation (A.6) for the case we are studying here. It becomes

∑

i

qi(µi, µj) −mc(µD−1, µj) = −nj . (A.11)
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To analyse this equation it is useful to consider the SL(D) indices that the corresponding

generators carry. The generators are constructed from the multiple commutators of the

Chevalley generators. The generators of AD−1 are justKa
b and so the Chevalley generators

they contain do not add or subtract from the total number of indices. However, equation

(A.11) is the same equation as one would find if one analysed the decomposition of the

adjoint representations of AD into AD−1 by deleting the end node i.e. node D. At level

mc the multiple commutator contains mc Chevalley generators KD
D+1 associated with the

deleted node. As these are related by the action of AD−1 to the generators Ki
D+1, i =

1, 2, . . . D we find that the effect is to lead to a generator that has mc vector indices. As

such, the number of indices on a generator that arises at level mc is mc. On the other

hand, as the generators are representations of AD−1 with Dynkin indices qi they must have
∑

i qi(D−i)+sD indices where the last term corresponds to the possibility of s blocks of D

antisymmetrised indices. We recall that having a non-trivial Dynkin index qi corresponds

to having qi blocks each with D− i totally anti-symmetrised indices. As such we find that

mc =
∑

i

qi(D − i) + sD . (A.12)

It follows that among the solutions that occur to equation (A.11) are all the representations

that occur in the decomposition of the adjoint representation of AD into representations

of AD−1. The actual problem may have more or less solutions as the condition for α2 is

different in the latter case to the problem being studied here.

Substituting the value of mc of equation (A.12) into equation (A.11) we find that the

latter is automatically solved and that the root coefficients are given by

nj = sj +
∑

i≤j

qi(j − i) . (A.13)

The fact that the right-hand side is non-negative indeed implies that the solution always

exists. Here we have used the formula for the scalar product of fundamental weights of an

AD−1 algebra

(µi, µj) =

{

i(D−j)
D

, i ≤ j
j(D−i)

D
, j ≤ i

. (A.14)

We are interested in forms in terms of their AD−1 indices and in particular the repre-

sentations of E11−D they belong to. By a k-form we mean an object that has just one set of

AD−1 indices that is a set of k completely antisymmetrised indices. This is a representation

of SL(D) with fundamental weight µD−k, which is equivalent to the condition qD−k = 1,

with all other Dynkin indices vanishing, with the additional requirement that there are no

blocks of D indices, i.e. s = 0. As such in equation (A.12) we require mc = k, s = 0 and

equation (A.11) becomes

(µD−k, µj) − k(µD−1, µj) = −nj (A.15)

which is automatically solved by taking s = 0 and qD−k = 1 in equation (A.13). For the

exceptional case of space filling forms we have one block of D totally anti-symmetrised

indices and so k = D, S = 1 and mc = D, with all the Dynkin indices qj vanishing.
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λ2
1 λ2

2 λ2
3 λ2

4 λ2
5 λ2

6 λ2
7 λ2

8

E8 2 6 12 20 30 14 4 8

E7 3/2 4 15/2 12 6 2 7/2

E6 4/3 10/3 6 10/3 4/3 2

D5 1 2 3 5/4 5/4

A4 4/5 6/5 6/5 4/5

Table 1: Table giving the square length of the fundamental weights of the internal symmetry

groups occurring in E+++
8 .

Rather than solving equation (A.8) for the E11−D highest weights it is quicker to first

solve equation (A.9). For the groups we are considering and for the case of forms, using

equations (A.10) and (A.14) we find that equation (A.9) becomes for a form or rank k,

with k < D,

α2 = k2(1 − λ2
1) + k + Λ2 (A.16)

where Λ2 =
∑

i,j pipj(λi, λj). While for space-filling forms, i.e. k = D one has

α2 = D(D + 1) −D2λ2
1 + Λ2 . (A.17)

Since α2 = 2, 0.− 2, . . . it is straightforward to find solutions to this equation once we

know the possible scalar products of the fundamental weights which for En, n = 6, 7, 8 are

given by [26]

(AEn)−1)ij =















i(9−n+j)
(9−n) , i, j = 1, . . . , n− 3, i ≤ j

(n−j)((n−3)2−i(n−5))
(9−n) , i, j = n− 3, . . . , n− 1, i ≤ j

2 i(n−j)
(9−n) , i = 1, . . . , n − 3, j = n− 3, . . . , n− 1,

(A.18)

and

((AEn)−1)in =







3i
(9−n) , i = 1, . . . , n− 3
(n−3)(n−i)

(9−n) , i = n− 3, . . . , n− 1
(A.19)

and

((AEn)−1)nn =
n

(9 − n)
. (A.20)

In fact in many cases it suffices to know the length squared of the fundamental weights

which are given in table 1, where the labelling is as in figure 25. To illustrate how this

goes let us study the case of D = 5, that is E6, for which α2 = −1
3k

2 + k+ Λ2 for a k-form

generator of A4. Taking k = 1 or k = 2, we find that α2 = 2
3 + Λ2 and examining the

above table we conclude that Λ2 = 4
3 and that p1 = 1, or p5 = 1, with all the other Dynkin

indices zero. For k = 3, we find that α2 = 0 + Λ2 and so Λ2 = 2 or Λ2 = 0 and so p6 = 1

all the other Dynkin indices zero or we have an E6 singlet. Finally, for k = 4, we find that

α2 = −4
3 + Λ2 and so Λ2 = 4

3 or Λ2 = 10
3 and so p5 = 1 or p1 = 1 or p4 = 1 or p2 = 1 all

the other Dynkin indices zero.

– 31 –



J
H
E
P
0
5
(
2
0
0
8
)
0
7
9

D G 1-forms 2-forms 3-forms 4-forms 5-forms 6-forms 7-forms

7 A4 10 (λ1) 5 (λ3) 5 (λ4) 10 (λ2) 24 (λ3 + λ4)

40 (λ2 + λ3) 70 (2λ3 + λ4)

45 (λ4 + λ2)

15 (2λ4) 5 (λ3)

6 D5 16 (λ1) 10 (λ4) 16 (λ5) 45 (λ3) 144 (λ4 + λ5)

320 (λ3 + λ4)

126 (2λ5)

10 (λ4)

5 E6 27 (λ1) 27 (λ5) 78 (λ6) 351 (λ4)
1728 (λ5 + λ6)

27 (λ5)

4 E7 56 (λ1) 133 (λ6) 912 (λ7)
8645 (λ5)

133 (λ6)

3 E8 248 (λ1)

3875 (λ7) 147250 (λ8)

3875 (λ7)

1 (0) 248 (λ1)

Table 2: Table giving the representations of the symmetry group G of all the generators with

completely antisymmetric indices of E+++
8 in dimension from 7 to 3, and the corresponding highest

weight. The representations are the conjugates of the ones in table 5 of [27], where the corresponding

fields were listed.

We now must check that the above solutions do indeed solve equation (A.8). For

example, for the case of D = 5 and so E6, and taking k = 1 we find that each form belongs

to only one fundamental representation of E11−D. The exception is the case of four forms,

that is mc = 1 for which we have the solutions λ1 and λ4. However the former case has an

α2 = 0 and has multiplicity zero.

For the case of space-filling forms for E6 we have mc = 5 and α2 = −10
3 + Λ2. The

possible solutions are λ5, λ4 λ2, λ1, 2λ4 and λ1 + λ6. Equation (A.8) rules out λ4 and it

turns out that λ1, λ2, 2λ4 have multiplicity zero. Hence for the space-filling forms we find

λ5 and λ1 + λ6.

Let us now consider the case of D = 3 or E8. In this case from equation (A.16) we

have α2 = −k2 + k + Λ2. Hence for k = 1 we have 1 and λ1 as usual, while for k = 2 we

can have 1, λ7 and λ1. It turns out the latter and the singlet in k = 1 have multiplicity

zero. For space-filling branes we find α2 = −6 + Λ2 and so we have 1, λ1, λ2, λ7, λ8 and

2λ1. It turns out that 1 λ2 and 2λ1 have multiplicity zero.

These results and those for all the other cases are summarised in table 2 [27]. Once

the results are listed in terms of their highest weights a pattern for all the groups is

apparent. The 1-form generators always have highest weight λ1. Indeed these generators

are the level one generators, and this is the representation with highest weight ν2 already

discussed. The 2-form generators in D dimensions belong to the representation of E11−D

with highest weight λ10−D. The three-dimensional case in exceptional because together

with λ7, which follows the patters, one also gets a singlet of E8. The 3-forms always

contain the representation with highest weight λ11−D, and the 4-forms always contain the

representation with highest weight λ9−D. The 5-forms always contain the representation

– 32 –



J
H
E
P
0
5
(
2
0
0
8
)
0
7
9

with highest weight λ10−D + λ11−D, and the 6-forms always contain the representation

with highest weight λ9−D + λ10−D and the one with highest weight 2λ11−D. There is

also an additional pattern involving the spacetime-filling forms, that always contain the

representation with highest weight λ10−D. It is amusing to draw the Dynkin diagrams of

E11−D and place the forms against the node corresponding to the highest weight of the

representations to which it belongs.

The reader can apply the above technology to find the representations of the forms in

the other cases required in this paper. For example one can consider the case of D+++
P

2
+4

of figure 4 discussed in section 4.3, which deleting node 6 leads to G1 = SO(6, 6) and

G2 = SO(P ). As explained above the lowest level representation has the highest weight

(µ5, λ1) and the reader will readily find the higher level results used in this paper. How-

ever, in this case one must further decompose SO(6, 6) into SL(6) to find the recognisable

representations of the forms in six dimensions.

One can calculate the representations found in this appendix using the programme

SimpLie [30]. This has the advantage that it gives the multiplicities of each representation.

However, we think it is useful to give a purely algebraic method that can be carried out

by hand. By doing such calculations one can spot features that one might otherwise miss

such as the above pattern of highest weights. These calculations can also be applied to

cases where one wants to compute the representations of the forms arising in the non-linear

realisation of groups like D+++
n for arbitrary n.
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